

Thermoelectrochemical Energy Storage

27 September 2012

Nick Hudak

Advanced Power Sources R&D Sandia National Laboratories

Exceptional service

in the

national

interest

The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery & Energy Reliability.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Thermoelectrochemical Energy Storage

- <u>Problem</u>: Flow batteries exhibit inefficiencies that are affected by operating temperature.
- Opportunity: Power plants produce waste heat that can be recovered and applied to other processes.
 - We can use the heat to increase the temperature of all or part of a flow battery system.
- Approach: Demonstrate the advantage of non-isothermal operation of a flow battery.
 - Charge at higher temperature and discharge at lower temperature
 - Energy efficiency at least 5% higher than isothermal operation

Battery Efficiency & Temperature

coulombic efficiency

discharge electrons

charge electrons

All-Vanadium Flow Battery

maximize

voltage efficiency

discharge voltage

charge voltage

"round trip"

energy efficiency =

- Electrochemical cells (including flow batteries)
 have an equilibrium (open-circuit) voltage that is
 dependent on temperature
- Voltage vs. temperature data is rarely collected for flow battery chemistries
- Voltage is a major component of the energy efficiency of a system

FY12 Milestones & Accomplishments

- Literature review and identification of cell chemistries of interest
- Experimental set-up for "half-cells" and full flow cells
 - High-precision voltage vs. temperature measurement
 - LabVIEW program developed: integration for automated measurement
- Half-cell (voltage vs. reference vs. temperature) testing of Fe^{2+/3+} redox couple with various electrolyte compositions
- Flow cell testing (voltage vs. temperature) of typical chemistries
 - all-vanadium with mixed Cl⁻/SO₄⁻ electrolyte
 - iron-chromium chloride (mixed and unmixed reactants)
 - iron-vanadium with Cl⁻ electrolyte
- Preliminary demonstration and prediction of increase in voltage efficiency from operating in non-isothermal mode
- Presentation at International Flow Battery Forum in Munich (June 2012)

Voltage-Temperature Data

Flow Cell Open-Circuit Voltage

Fe^{2+/3+} Half-Cells (vs. reference electrode)

Flow cells are at 50% state-of-charge for the voltage-temperature measurement. Flow rate is 0.1 ml/min on positive and negative electrodes.

Efficiency Improvement

Predicted

Voltage-temperature data from previous slide used to estimate the voltage efficiency at 50 mA cm⁻². Major assumption is that all cell polarization is from the ohmic resistance of a Nafion 117 membrane. Nafion conductivity values from: C. H. Lee et al, *Ind. Eng. Chem. Res.* **44**: 7617 (2005)

Measured

All-vanadium flow cell at 10 mA/cm²

Voltage Efficiency

isothermal (60°C): 93.2% non-isothermal (60-21°C): 95.2% Increase of 2%

Summary

- Non-isothermal operation of flow batteries
 - Charge at higher temperature, discharge at lower temperature
 - Possible increase in round-trip efficiency > 5%
 - Voltage-temperature data needed to evaluate feasibility
 - Voltage-temperature data also useful for thermal models, fundamental studies
- Experimental set-up developed for voltage-temperature measurements of half-cells and full flow cells
- Half-cell and flow cell data was acquired for iron, chromium, and vanadium chemistries
 - All-vanadium and iron-vanadium flow cells show most promise for benefitting from nonisothermal temperature scheme
- Based on acquired data, iron-vanadium flow cell predicted to benefit from an efficiency increase of 7% by using a non-isothermal configuration
- Observed increase in voltage efficiency of 2% in all-vanadium flow cell

Future Tasks

- Repeat all measurements to obtain error estimates and make data publication-ready
- Additional variation of electrolyte composition in half-cells to determine effect of concentration and supporting electrolyte
- Short-term and long-term cycling of cells under different temperature regimes to measure efficiency advantage of non-isothermal configurations
- Submission of manuscript(s) to peer-reviewed publications

Acknowledgements

Dr. Imre Gyuk

- Tom Wunsch (manager, Advanced Power Sources R&D)
- David Ingersoll and Karen Waldrip (technical advice)
- Terry Aselage, Ross Guttromson, Tony Martino (Energy Storage management @ Sandia)

For more information, please contact:

Nick Hudak nhudak@sandia.gov +1 505 844 2171